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Abstract

Cancer of unknown primary (CUP) origin is an enigmatic group of diagnoses in which the

primary anatomical site of tumour origin cannot be determined . This poses a considerable

challenge, as modern therapeutics are predominantly specific to the primary tumour . Recent

research has focused on using genomics and transcriptomics to identify the origin of a

tumour . However, genomic testing is not always performed and lacks clinical

penetration in low-resource settings. Here, to overcome these challenges, we present a deep-

learning-based algorithm—Tumour Origin Assessment via Deep Learning (TOAD)—that can

provide a differential diagnosis for the origin of the primary tumour using routinely acquired

histology slides. We used whole-slide images of tumours with known primary origins to train a

model that simultaneously identifies the tumour as primary or metastatic and predicts its site

of origin. On our held-out test set of tumours with known primary origins, the model achieved a

top-1 accuracy of 0.83 and a top-3 accuracy of 0.96, whereas on our external test set it achieved

top-1 and top-3 accuracies of 0.80 and 0.93, respectively. We further curated a dataset of 317

cases of CUP for which a differential diagnosis was assigned. Our model predictions resulted in

concordance for 61% of cases and a top-3 agreement of 82%. TOAD can be used as an assistive

tool to assign a differential diagnosis to complicated cases of metastatic tumours and CUPs and

could be used in conjunction with or in lieu of ancillary tests and extensive diagnostic work-ups

to reduce the occurrence of CUP.
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Data availability

The TCGA diagnostic whole-slide data and corresponding labels are available from NIH

genomic data commons (https://portal.gdc.cancer.gov/). The CPTAC histology data and

corresponding labels are available from the TCIA CPTAC Pathology Portal

(https://cancerimagingarchive.net/datascope/cptac/). Processed data that are included in the

figures presented in the paper are available as source data. Restrictions apply to the availability

of the raw in-house and external data, which were used with institutional permission through

IRB approval for the current study, and are thus not publicly available. Please email all requests

for academic use of raw and processed data to the corresponding author (and also include

M.Y.L. (mlu16@bwh.harvard.edu)). All requests will be evaluated based on institutional and

departmental policies to determine whether the data requested is subject to intellectual

property or patient privacy obligations. Data can only be shared for non-commercial academic

purposes and will require a formal material transfer agreement. Source data are provided with

this paper.

Code availability

All code was implemented in Python using PyTorch as the primary deep learning package. All

code and scripts to reproduce the experiments of this paper are available at

https://github.com/mahmoodlab/TOAD.
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Extended Data Fig. 1 Overall study design.

The model was first trained and tested on tumours of known primary origins. For model

development and testing, we collected, in total, 32,537 H&E digitized diagnostic slides (from

29,107 patients) with confirmed diagnosis and randomly sampled 70% of cases (22,833 slides) to

train the model and 20% of cases (6,499 slides) were held-out for evaluation. The remaining 10%

of cases (3,205 slides) was used for validation during training to select the best performing

model. To further assess the ability of the model to generalize on data from sources and

staining protocols that it did not encounter during training, we also evaluated the model on an

external test cohort of 682 cases, submitted from more than 200 US and international medical

centres. The model was then assesed on increasingly difficult cases of metastatic

tumours. Lastly, to assess the ability of the model to inform meaningful predictions for origins

of cancers that cannot be readily diagnosed by human experts using H&E histology alone, we

curated an additional diverse dataset of 743 cases of CUP sourced from institutions across the

country and outside the USA. Although the primary cancer could not be initially assigned for all

of these cases based on H&E histology alone, using EMRs and evidence from clinical and

ancillary tests, we identified a subset of 317 cases for which a primary differential was eventually

assigned over the course of the patient’s history (see Methods). We validated our model against

the recorded primary differential for agreement, showcasing the applicability of the model to

cases without clear morphological indication for a particular primary cancer.

Extended Data Fig. 2 Classification performance for the prediction of cancer
origins on metastatic tumours.

a, The confusion matrix, along with the precision and recall of each class and its count is plotted

for metastatic tumours in the test set (n = 1,408). Glioma was excluded as there were no

metastatic glioma specimens in the test set and it was verified that no case of metastasis was

predicted as glioma by the model. b. The micro-averaged, one-versus-rest AUC ROC. c, Top-k

accuracies of the model on only metastatic tumours (n = 1,408), and on the combined set of

metastatic and primary tumours (n = 6,499). d, Accuracy of the model on metastatic tumours

binned into different levels of prediction confidence. a, c, d, Error bars indicate 95% confidence

intervals, the centre is always the computed value of each classification performance metric

(specified by its respective axis labels).

Source data

Extended Data Fig. 3 Performance for the prediction of cancer origins on
metastatic and primary tumours.

a, b, Additional metrics including per-class and micro-averaged F -score and mean average

precision score are computed for the combined set of primary and metastatic tumours (a; n =

6,499) and only metastatic tumours (b; n = 1,408) in the test set. a, b, Error bars indicate 95%

confidence intervals, plotted around the computed value of each classification performance

metric (specified by its respective axis labels). Note that the micro-averaged F -score is the same

as the overall accuracy. See Supplementary Table 3 for the number of metastatic and primary

tumours for each origin in the test set.

Source data

1

1

Extended Data Fig. 4 Ablation studies.

a, b, Ablation experiments were performed to assess the benefit of multitask learning and

including patient sex as an input in addition to histology on the performance for the prediction

of cancer origins (see Methods, ‘Ablation studies’). Top-k accuracies for testing on both primary

and metastatic tumours (a; n = 6,499) in the held-out test set and testing on only metastatic

tumours (b; n = 1,408). The multitask model with access to patient sex scored nearly 2.0%

higher in top-1 accuracy compared to the baseline, single-task model using histology only when

testing on the entire test set, and is 6.8% higher when testing on only the metastatic tumours. c,

Additional experiments are performed to assess the importance of including primary tumour

slides during training and the effect of adding the tissue sampling or biopsy site as another

input covariate (in addition to sex) on model performance on metastatic tumours (n = 1,408).

The accuracy of the model decreased by 8.5% when trained on only metastatic tumours in the

training set, showing that the ability of the model to recognize metastatic tumours benefits

substantially from also learning from primary tumours. We additionally experimented with

providing the tissue sampling or biopsy site to the model. Multitask training is used when

training on both primary and metastatic tumours. A decrease of 4.6% in model accuracy is

observed when the biopsy site information is incorporated. This is probably because the biopsy

site can provide a direct shortcut to the ground truth label for primary tumour slides and

therefore discourages the model from learning from the morphology of primary tumours,

which we have found to be beneficial for the ability of the model to recognize metastatic

tumours. a–c, Error bars indicate 95% confidence intervals, plotted around the computed value

of each classification performance metric (specified by its respective axis labels).

Source data

Extended Data Fig. 5 Model performance on the binary problem of distinguishing
between primary and metastatic tumours.

a, Performance for tumours at common metastatic sites. The AUC ROCs (y axis) with associated

95% confidence intervals and ROC curves are shown for organ sites (x axis) with at least 10

metastatic and 10 primary tumours in the test set. The ovary, uterus and cervix were grouped

into upper female reproductive tract (‘Müllerian’). The number of primary tumours (first

element) and metastatic tumours (second element) at each site are indicated as a tuple above

each bar. b, Performance for tumours of different primary origins. The AUC ROCs (y axis) with

associated 95% confidence intervals and ROC curves are shown for tumours from each origin

site (x axis) except for glioma, for which no metastatic tumours were present in our test set. The

number of primary tumours (first element) and metastatic tumours (second element) for each

origin are indicated as a tuple above each bar. a, b, Without the loss of generality, metastatic

tumours are designated as the ‘positive’ class, and primary tumours as the ‘negative’ class for

computing sensitivities and specificities. The operating point of the model is indicated by a red

dot on each ROC curve, and is based on maximizing Youden’s J index.

Source data

Extended Data Fig. 6 Model performance on difficult metastatic and unknown
primary tumours.

a, The performance of the model for the prediction of cancer origins is evaluated in terms of

top-k accuracies (acc) and Cohen’s κ score for patients with metastatic tumours in the held-out

test set (n = 1,408). Performance is additionally reported for subsets of patients with metastatic

tumours depending on the number of diagnostic IHC stains used, whether recommendation for

clinical or radiological correlation was given and whether the tumour was categorized as poorly

differentiated. b, For the held-out test set of cases of CUP with assigned primary differential

diagnosis (n = 317), the model performance is assessed using agreement (agr) with the assigned

differential. Performance is additionally reported for high-confidence model predictions (for

example, model confidence ≥ 0.5) as well as for cases with a high versus low degree of

diagnostic certainty associated with the assigned differential. For cases of CUP, based on the

strength of evidence used to support the differential diagnosis and language used in EMRs, we

define high-certainty diagnoses as being compatible with morphological evidence or

supported by IHC findings or clinical, radiological or molecular correlation, whereas low-

certainty diagnoses may not suggest a single specific primary origin or lacked definitive
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certainty diagnoses may not suggest a single specific primary origin or lacked definitive

supporting evidence for the assigned primary differential. a, b, Error bars indicate 95%

confidence intervals, plotted around the computed value of each classification performance

metric (specified by its respective axis labels).

Source data

Extended Data Fig. 7 Examples of metastases from colorectal, breast and lung
primary tumours with attention heat maps.

a–c, Example metastases from colorectal (a), breast (b) and lung (c) primary tumours are

shown. For each case, the attention heat map of the model is displayed on top of the original

H&E WSI as a semi-transparent overlay in which the overlaid regions range from crimson (high

attention, high diagnostic relevance) to navy (low attention, low diagnostic relevance). Left,

sites of metastasis are shown, including the lung, lymph node (LN), liver and brain. Right, H&E

images show, from left to right, low magnification with corresponding attention map, medium

magnification with corresponding attention map, and high-magnification patches. a, Medium-

and high-magnification views demonstrate so-called ‘dirty necrosis’ and variably sized glands

with densely packed, hyperchromatic nuclei that are characteristic of colorectal

adenocarcinoma. b, Medium- and high-magnification views demonstrate sheets of cells as well

as small tubules and glands—morphologies that are consistent with metastatic breast

carcinomas. c, Medium- and high-magnification views demonstrate sheets of cells, variably

sized glands and cells in infiltrative single files. The cells have large, hyperchromatic nuclei and

high nuclear:cytoplasmic ratios, which are consistent with metastatic lung carcinomas. a–c,

The attention heat maps allow the predictions of the model for each case to be visually

interpretable for human experts, revealing the morphological features used by the model for

the determination of the classification. High-resolution heat maps for cases from all primary

sites can be accessed through our interactive demo website (http://toad.mahmoodlab.org).

Extended Data Fig. 8 TOAD-assisted CUP work-up: example 1.

Top, a representative case that underwent a standard CUP work-up involving extensive IHC

staining and clinical correlation. Strong PAX8 staining suggested a Müllerian origin and

multiple IHC tests were used to rule out other primary tumours. Retrospectively, we analysed

the case with TOAD and found that the top-3 determinations were ovarian, breast and lung, and,

after this determination, that only three IHC stains (PAX8, GATA3 and TTF1) needed to be used

to confirm a Müllerian origin and rule out breast carcinoma and lung adenocarcinoma. This

workflow demonstrates how TOAD can be used as an assistive diagnostic tool. Bottom, medium

magnification and corresponding heat maps of representative areas of tumour, with high-

magnification, high-attention patches on the right outlined in crimson and low-attention

patches outlined in navy.

Extended Data Fig. 9 Analysis of high-attention regions for metastatic tumours.

Relative counts of different cell types localized within the high-attention regions proposed by

the model were quantified. Specifically, the top-10 high-attention patches from each slide were

extracted at the 20× equivalent magnification and a HoverNet  model trained for multi-organ

nucleus segmentation and classification was used to detect different cellular populations

including tumour cells (red), lymphocytes (green), connective tissue (blue), dead cells (yellow)

and non-neoplastic epithelial cells (orange). The fraction of cells for each cell type is plotted

using box plots for all metastatic slides in the test set (n = 1,408) and is stratified by each

primary origin site: lung (n = 236), breast (n = 231), colorectal (n = 175), pancreatobiliary

(n = 122), skin (n = 111), ovarian (n = 102), renal (n = 79), prostate (n = 64), head and neck (n = 57),

oesophagogastric (n = 52), thyroid (n = 43), bladder (n = 42), germ cell (n = 32), endometrial

(n = 21), liver (n = 18), adrenal (n = 12) and cervix (n = 11). Boxes indicate quartile values and

whiskers extend to data points within 1.5× the interquartile range. This analysis demonstrates in

addition to the attention heat maps, that the model attends strongly to regions of tumour

presence for its predictions.

Source data

35

Extended Data Fig. 10 Classification performance of adenocarcinoma network,
squamous cell carcinoma network and site-specific networks for tumour
metastasized to the liver and lymph node.

a, b, Often pathologists can readily distinguish between adenocarcinoma and squamous cell

carcinoma based on the morphological and architectural appearance of the tumour cells that

are present in the tissue. However, within the respective family of adenocarcinoma and

squamous cell carcinoma subtypes, determining the origin of the tumour can remain a

challenging task. Therefore, we hypothesized that we can develop models to specifically

predict the origin of tumours for top primary sites of adenocarcinoma (a) and squamous cell

carcinoma (b). Cases from six primary sites (breast, lung, colorectal, pancreatobiliary, prostate

and oesophagogastric) and four primary sites (head and neck, lung, cervix and

oesophagogastric) were chosen for the development of the adenocarcinoma and squamous cell

carcinoma classifiers, respectively, based on their frequency in the database. We also explored

the additional scenarios of predicting the primary origins of metastatic tumours grouped by a

common metastatic site, including the liver (c) and lymph node (d). Cases of metastasis from

the top-four and top-seven primary origins for liver and lymph nodes, respectively, were chosen

on the basis of their frequency in our database. See Methods, ‘Additional experiments and

analysis’ for details. a–d, Left, the confusion matrix, along with the precision and recall of each

class and its count is plotted for the adenocarcinoma model test set (a; n = 2,920) and

squamous cell carcinoma model test set (b; n = 621), the liver metastasis (met.) site test set (c;

n = 223) and lymph node metastasis site test set (d; n = 318), respectively. Consistent with the

model developed using examples of all 18 primary sites, the adenocarcinoma-, squamous-cell-

carcinoma- and site-specific models were trained by including the sex of the patient.

Performance for models trained with and without the sex of the patient in terms of the micro-

averaged, one-versus-rest AUC ROC (middle) and F -scores for each primary site and overall

model accuracy (micro-averaged F -score) (right) are shown. All error bars indicate 95%

confidence intervals, plotted around the computed value of each classification performance

metric (specified by its respective axis labels).

Source data
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