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Abstract

The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is unclear.

Here, we use comprehensive molecular characterization by whole genome/exome,

transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational

heterogeneity with TP53, MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated

known cancer-related genes. The most common fusion partner is FGFR2, the most common

focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based

treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and

methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline

analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label

therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17 patients)

and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical value of

molecular analysis and underline the need for innovative, mechanism-based clinical trials.

Introduction

Cancer of unknown primary site (CUP) is defined as metastatic cancer without detection of a

tumor of origin and accounts for 2–4% of all malignancies. Treatment options are limited and in

the majority of cases insufficient . Routine diagnostic measures contain blood analyses,

histopathology including immunohistochemistry as well as imaging of thorax, abdomen, and

pelvis. Even though the prognosis is unfavorable in the majority of cases, ~15% of patients can be

categorized into more favorable subsets that benefit from treatment similar to therapies

administered to patients with corresponding primary tumors and metastatic spread.

Therefore, identification of those favorable CUP subtypes is important for efficient treatment .

Currently, CUP subtype identification is mainly based on disease localization and a systematic,

in-depth immunohistochemical assessment, but considerable research efforts aim at

improving its accuracy or applicability to more patients by new technologies. RNA expression

profiling has been reported to identify the tissue of origin in 80–90% of cases . Epigenetic

profiling using DNA methylation signatures has been reported to predict the tissue of origin in

almost 90% of cases . Nevertheless, to date there is no clear evidence from prospective

randomized trials that site-specific therapy based on these new approaches leads to improved

patient outcome .

Broad, mainly panel-based, molecular analyses of patients with CUP revealed profound genetic

heterogeneity with most frequent alterations in common cancer-related genes like TP53, KRAS,

CDKN2A, and SMAD4 . In many cases genetic alterations were identified  that potentially

can be addressed therapeutically . Still, the clinical benefit of molecularly guided treatment in

CUP remains unclear.

Here we describe a cohort of 70 CUP patients characterized by comprehensive molecular

profiling within the MASTER program of the National Center for Tumor Diseases and the

German Cancer Consortium (NCT/DKTK) combining whole-exome/genome sequencing,

transcriptome and methylome analysis in a clinical workflow to identify therapeutic targets.

Based on deep insights into the highly individual molecular landscape of the disease, molecular

tumor board recommendations led to genomics-guided treatment in 20 patients.

Results

Patients
Seventy CUP patients were included of whom 61 met the criteria defined by the ESMO clinical

practice guideline . In the remaining nine cases documentation of necessary initial imaging

procedures was lacking (such as CT scans of thorax, abdomen and pelvis). Median age was 46

years (range 18 to 73). 27/70 (39%) patients were male, 43/70 (61%) were female. Median follow-

up time was 25.9 months. Median overall survival (OS) was 22.1 months. 38 patients died during

the observation period. Documentation of previous therapies and tumor burden was available

for 69 patients. The median number of systemic therapies prior to sample submission for these

69 patients was 1 (range 1–7). Detailed patient characteristics are depicted in Table 1 and

Supplementary Data 1 and 2.

Table 1 Patient characteristics.

Full size table

Somatic molecular characteristics
We performed whole-exome sequencing (WES; 41/70, 59%) or whole-genome sequencing (WGS;

29/70, 41%) of tumor DNA and control (germline) DNA derived from peripheral blood. RNA

sequencing was performed in 55/70 (79%) cases. Within the coding sequence, 0 to 1418 non-

silent point mutations (SNVs, median = 42.5) and 0 to 39 small insertions/deletions (indels,

median = 3) were identified per sample (Fig. 1). Three samples had a significantly higher tumor

mutational burden (TMB) than all others (≥10 mutations per megabase, Fig. 1). Two-thirds (n = 

46) of all samples had alterations (SNVs, indels and fusions) occurring in genes, which were

mutated in more than 10% of all samples. Those included nine genes: TP53, TTN, MUC16,

ABCA13, COL6A3, KRAS, LRP1B, XIRP2 and CSMD3, of which five (TP53, MUC16, KRAS, LRP1B and

CSMD3) are known to be highly relevant in cancer . Three samples (4%) in our cohort harbored

a mutation in the CDKN2A gene, comprising one stop-gain SNV, one nonsynonymous SNV and

one frameshift deletion. Genes most commonly affected by SNVs were TP53 (n = 24), TTN (n = 

19), MUC16 (n = 10), ABCA13 (n = 9), COL6A3, CSMD3, LRP1B, XIRP2 (n = 8 each), KIAA1109, KRAS,

OBSCN (n = 7 each), CSMD1, DNAH12, NEB, PCLO and PTPRF (n = 6 each). Genes most commonly

affected by indels were ARID1A (n = 3), APC, DNAH7, ESRRA, LMTK2 and ZNF107 (n = 2 each).

Based on RNA sequencing, we detected 0 to 61 (median = 10, mean = 15) gene fusions of high

confidence per patient, many of which were of unclear relevance. In 17 patients we detected

fusions with predictive or diagnostic relevance (Supplementary Data 3). The genes that were

most commonly involved in these fusions were FGFR2 (6 patients), EML4-ALK (3 patients), BRAF

(3 patients) and EWSR1-WT1 (2 patients). In four cases the FGFR2 fusion was intrachromosomal

and included inversions (n = 3, twice with BICC1), translocations (n = 2) and a deletion (n = 1). All

samples tested for microsatellite instability (MSI) were microsatellite stabile (MSS, n = 69).

Analysis of somatic copy number aberrations (sCNA) could be reliably performed in 51 samples

(27 WGS and 24 WES). We identified diverse tumor ploidies ranging from two to six (2: n = 31; 3:

n = 6; 4: n = 11; 6: n = 3), as well as complex copy number profiles. Furthermore, we found gain

and loss events involving single arms or entire chromosomes occurring in multiple samples

(Supplementary Fig. 1). In at least 40% of the samples, we detected (i) gains in chromosomes 8q,

1q and 7 (with peaks in loci 8q24.21, 1q42.2, 7q11.21 and presence in 65%, 63% and 55% of

samples, respectively) and (ii) losses in chromosomes 6q, 17p, 3p and 8p (with peaks in loci

6q26, 17p13.1, 3p14.2, 8p12 and 8p23.2 and presence in 46%, 46%, 44%, 41% and 41% of samples,

respectively). Notably, locus 17p13.1 includes TP53. The most common focal copy number

aberrations identified in WGS samples included: (i) amplification involving a fragment of

8q24.21 and affecting MYC (n = 4), (ii) homozygous deletion involving a fragment of 22q12.2

affecting TTC28 (n = 7)—which inhibits tumor cell growth by interacting with TP53 , and (iii)

deletion involving a fragment of 9p21.3 directly affecting tumor suppressor CDKN2A (n = 7;

homozygous deletion in six samples, and deletion of one copy in one sample). Homologous

recombination deficiency (HRD) could be assessed in 51/70 patients by calculating a score (sum

of LOH-HRD and LST). The score was high (>20) in twelve, intermediate (in range 11–20) in 19

and low (≤10) in 20 patients. Additionally, we used two WGS-based methods, HRDetect and

CHORD, which produced a software-specific HRD probability score. The probability was >0.99

and >0.93, respectively, in two patients (CUP-45 and CUP-08). Both of them were the highest-

scoring WGS samples of the first method (sum of LOH-HRD and LST), which was independent

from sequencing type (Supplementary Fig. 2). Analysis of the sequencing data for reads of viral

origin revealed three tumors, which were positive for human papillomavirus type 16 and

another one, which was positive for human papillomavirus type 18 (Supplementary Table 1).

Integration of viral DNA into the host genome was detected in three cases inside/near the genes

HOXA2, MIER1, SLC35D1, and TENM4. Mutational signature analysis revealed signatures

associated with impaired homologous recombination (AC3) in seventeen, with UV exposure

(AC7) in twelve, with tobacco smoking (AC4) in nine, and with alkylating agent exposure (AC11)

in five samples. These signatures were dominant in thirteen, three, four, and zero samples,

respectively (Supplementary Fig. 3). Mutations of TP53 (27 SNVs, one frameshift insertion) and

KRAS (seven SNVs) were significantly enriched within the cohort (MutSigCV v.1.4, q < 0.15) with

a median allele frequency of 0.42 for TP53 and 0.48 for KRAS . In all but one TP53-mutated

samples, sCNA were identified comprising loss of heterozygosity (LOH) and/or deletion (for

more details see Supplementary Results).

Fig. 1: Molecular alteration landscape and TMB of CUP patient cohort.

figure 1

Complex characteristics are presented for each patient sample (x-axis). The bar plot on top shows the

sum of non-silent somatic single-nucleotide variants (SNVs) and coding small insertions/deletions

(indels) in exonic sequences per 1 Mb of the coding sequence of the genome. Three samples above 10

mut/Mb threshold (black bars) had a very high mutational burden and were excluded from the pool of

mutations considered for the thresholding of genes in the bottom part of the figure. Directly below, the

annotation shows: (i) the sequencing type performed, (ii) histology, (iii) HPV infection status, (iv)

homologous recombination deficiency (HRD) scores (LOH-HRD + LST), which were defined as high

(>20), intermediate (in range 11–20) or low (≤10) together with HRD annotation from HRDetect (p > 0.7)

and CHORD (p ≥ 0.5), (v) presence of mutation (SNV, indel and fusion of high confidence) in genes

related to HRD  (Supplementary Data 18), (vi) the presence and dominance status of mutational

signatures AC3, AC4 and AC7. The panel underneath shows the percentage (on a continuous color scale

from white to orange) of affected genomic fragments by the most frequent copy number events,

including amplifications of chromosomes 1q, 7, 8q and deletions of chromosomes 3p, 6q, 8p, and 17p.

The genomic coordinates of minimum overlapping fragments with sCNAs occurring at highest

frequencies are: 1: 231909967-231965044, 7: 61969019-62050023, 8:128229683-128247675, 8:128340019-

128351894, 8:128351920-129149936 for amplifications, and 3:60450070-60453492, 6:162542556-

162630329, 8:3094996-3159994, 8:3570000-3590017, 8:3630011-3660004, 8:32400042-32409988,

8:33915011-33989984, 17:9010240-9010378 for deletions. The bottom panel presents the most

frequently observed non-silent SNVs (blue), indels (red), fusions of high confidence (green) and focal

homozygous deletions (pink; only in genes related to cancer ). Only genes mutated in 4 or more

patients (while excluding samples with more than 10 mutations/megabase from counting) appear in the

plot. Genes in black font color are listed in the Cosmic Cancer Gene Consensus , genes in gray font

color are not. Source data are provided as a Source Data file.
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Germline analysis
Assessment of germline variants in all 70 patients revealed five pathogenic or likely pathogenic

variants (Supplementary Data 4) in five patients (7%) in the genes CHEK2, BRCA1, CDKN2A, NBN

and ERCC3. Genetic counseling was recommended for the index patients and for their relatives.

The mean age at onset of the five patients with pathogenic or likely pathogenic variants was

significantly lower than the age at onset of the other 65 patients (29.7 vs. 45.5 years, p = 0.001).

In addition to the recommendation for genetic counseling, three variants likely associated with

an autosomal dominant cancer disposition supported a treatment recommendation, twice for

PARP inhibition (BRCA1, CHEK2) and once for CDK4/6 inhibition (CDKN2A). None of the patients

with documented previous tumors (five patients) had a (likely) pathogenic germline mutation.

Moreover, loss-of-heterozygosity (LOH) occurred only in one of the patients with a pathogenic

variant (CDKN2A, CUP-64).

Entity prediction using methylome and transcriptome data
We retrospectively performed entity predictions using methylome- and transcriptome-based

similarity analysis. For this purpose, we first used methylome and transcriptome data from 33

different TCGA cohorts. We set up a validation cohort using 100 consecutive MASTER patients

enrolled between 12/2020 and 06/2021 (Supplementary Data 5) consisting only of entities that

are part of TCGA to ensure comparability with other tissue-of-origin classifiers, which were

usually trained on TCGA data and can therefore only reliably predict entities that are part of

TCGA. Transcriptome data was available for 72 patients of the validation cohort

(Supplementary Data 6), methylome data for 77 (Supplementary Data 7). We compared the

accuracy of our results (expression comparison TCGA 41/72, 57%; methylome comparison

TCGA 52/77, 68%) with two other published methods, cancerSCOPE  and CUP-AI-Dx , both of

which had similar accuracy as our entity prediction when using TCGA as a reference cohort

(cancerSCOPE highest score 40/72, 56%; cancerSCOPE consensus 35/72, 49%; CUP-AI-Dx 39/72,

54%). When comparing TCGA cohorts with our CUP cohort, classification based on methylome

comparison was possible in 55/70 cases (79%). The remaining cases had a tumor cell content of

30% or less or did not have enough DNA material available for analysis. Classification based on

transcriptome was possible in 55/70 cases (79%) as well, but not in the very same 55 patients

classified by methylome analysis. The remaining cases had low RNA quality or did not have RNA

material available for analysis. In 62/70 cases (89%) entity prediction was possible by at least

one of the methods. In 48/70 cases (69%) entity prediction was possible by both methylome and

transcriptome analysis. In only 20/48 (42%) the same entity was predicted by both methods,

causing us to consider additional data like indicative molecular alterations and histology

(Supplementary Data 8). To address this problem, we performed a similarity analysis by

comparing the transcriptome data of the entire MASTER cohort across histologies (reference

cohort consisting of 1890 samples from 1814 patients, Supplementary Data 9) with our CUP

cohort. This approach showed the best accuracy when tested on our validation cohort (56/72,

78%, Supplementary Data 6) and enabled us to have a comparison to rare tumor entities, which

were enrolled in MASTER but are not part of TCGA. When plotted graphically (Fig. 2a–d), some

TCGA entities showed distinctive clusters, some did overlap with other entities.

Cholangiocarcinoma (CHOL) and pancreatic adenocarcinoma (PAAD) are two examples of

entities that were hard to distinguish while at the same time occurring quite often as

predictions in our CUP cohort. CUP samples were close to many entities that did not necessarily

cluster distinctively. For example, none of the CUPs were close to pheochromocytoma and

paraganglioma (PCPG), which cluster separately from most other entities, but many CUPs were

close to gastrointestinal tumors. Taken together, our multi-omics approach led to a higher

percentage of predictions but at the same time it did not clarify the diagnosis in a subgroup of

patients (concurring and discrepant results presented in Venn diagrams, Fig. 2e, f). It highlights

the need for an integrated classifier taking into account both methylation and transcriptomic

data (detailed information on entity predictions in Supplementary Data 8).

Fig. 2: Methylome and transcriptome-based clustering.

figure 2

a tSNE plot based on the 5000 most variant CpG sites across the TCGA pan-cancer cohort (n = 8024, 33

different cancer entities in 32 entity baskets). The tSNE analysis was jointly performed on the complete

TCGA and MASTER CUP samples (n = 55) to ensure comparability within the landscape. This subplot

shows TCGA samples only. While many TCGA entities show distinctive clusters, some do overlap with

other entities. b This subplot illustrates all MASTER CUP patients (black) on top of the TCGA sample

landscape (gray). CUP samples were close to many entities that did not necessarily cluster distinctively

(e.g., gastrointestinal tumors). c Transcriptome-based tSNE clustering of 33 different cancer entities in

32 baskets using TCGA data without CUP patients (n = 1809). d Transcriptome-based tSNE clustering of

MASTER CUP patients (black, n = 55) among the background of TCGA-based clusters (gray). As with the

methylome-based clustering, a notable fraction of the samples are found in the diffusely structured

center of the tSNE clustering. e Venn diagram depicting concurring results between methylome-based

CUP entity predictions (comparison to TCGA) and transcriptome-based entity predictions (comparison

both to TCGA and MASTER; each depicted in separate groups). 48 patients of the CUP cohort had

predictions based on all three methods and were therefore eligible for comparison (Supplementary

Data 8). f Venn diagram depicting concurring results between both transcriptome-based CUP entity

predictions (TCGA and MASTER comparison). 55 patients of the CUP cohort had transcriptome-based

predictions (Supplementary Data 8). Source data are provided as a Source Data file.
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Diagnostic interpretation of molecular profiling
We detected several rare genetic alterations of diagnostic interest (Supplementary Data 8). We

found an IDH1 p.R132C mutation (CUP-68) and an IDH2 p.R172G mutation (CUP-19), which have

been reported to occur in a subtype of cholangiocarcinoma . Both offer a rationale for

treatment with IDH inhibitors. In CUP-03 we detected a KIT p.V560D mutation and

transcriptomic profiling matched with thymic carcinomas. Although KIT mutations occur in

different entities, they have been described to occur in thymic carcinomas  and can be

addressed therapeutically by several generations of tyrosine kinase inhibitors.

Additionally, we were able to identify several oncogenic gene fusions of interest

(Supplementary Data 3). In six patients, we detected a gene fusion involving FGFR2, which

always occurred at the same splice-site of the FGFR2 gene (Fig. 3a). These fusions are typical for

a subgroup of cholangiocarcinoma . Usually, the intact kinase domain of FGFR2 is fused with a

gene, which provides a dimerization/oligomerization domain that facilitates constitutive

activation of downstream RAS/MAPK and PI3K/AKT pathways. Moreover, they can be addressed

therapeutically using FGFR inhibitors . EML4-ALK fusions were detected in the tumors of three

patients (3/70; CUP-02, CUP-20, CUP-11) and could be confirmed by immunohistochemistry in

all cases. At the same time CUP-33 was reported to have a previously detected EML4-ALK fusion

that could not be found in our analysis, most likely due to low quality of the biopsy sample.

EML4-ALK fusions are characteristic for a subtype of non-small-cell lung cancer (NSCLC) and

can be addressed therapeutically using ALK inhibitors . We detected two EWSR1-WT1 fusions

(CUP-15, CUP-42), which are typical for desmoplastic small round cell tumors . Two patients

diagnosed with melanoma of unknown primary by histologic analysis (CUP-34 and CUP-64)

harbored two BRAF fusions each, of which CUP-34 also had a BRAF V600E mutation.

Fig. 3: Fusions of high confidence.

figure 3

Exon structures in transcriptome sequencing data are shown. a Fusions involving FGFR2 found in six

patients. Fusion partners were CLIP1, NOL4, WAC, SORBS1 and twice BICC1. b Fusion involving NUTM1

found in one patient. MXI1 has not been described previously as a fusion partner for NUTM1, but NUTM1

fusions do define NUT midline carcinomas. Therefore, we identify MXI1 as a new possible fusion partner

in NUT midline carcinoma. Source data are provided as a Source Data file.

Full size image

CUP-14 had an ARHGAP26-CLDN18 fusion, which has been described in gastric signet-ring cell

carcinoma . A previously undescribed MXI1-NUTM1 fusion was detected and confirmed by

routine diagnostics in CUP-04 (Fig. 3b). NUTM1 fusions define NUT midline carcinomas  and

usually involve BRD3 or BRD4 as fusion partners. In CUP-08 we detected an EZR-ERBB4 fusion,

which has been described only once in KRAS wild type invasive mucinous lung

adenocarcinoma . Furthermore, we identified an ITSN1-BRAF fusion in CUP-70 that has not

been described yet. However, without additional information the fusion event can’t be linked to

a certain entity since BRAF fusions play a role in various tumor entities .

In total, 20/70 (29%) patients harbored rare genetic alterations that could be linked to specific

entities. Not all of them correlated with entity prediction results based on transcriptome

profiling and these alterations alone did not necessarily justify diagnostic reclassification. Still,

together with omics-based entity predictions they offer meaningful information of diagnostic

value and can be useful for further treatment decisions.

Genomics-based treatment recommendations
A dedicated molecular tumor board (MTB) recommended personalized therapy options based

on information from DNA and RNA sequencing for 56/70 (80%) patients in our cohort. Median

turnaround time from sample submission to MTB was 2.3 months (range 0.7–7.0 months). In

four cases without recommendation (4/70) the tumor cell content of the respective biopsy was

not sufficient for analysis, in six cases (6/70) the respective patients died before the tumor

board could convene, in two cases (2/70) the sample quality was not sufficient for analysis and

in the remaining two cases (2/70) no targetable mutations were found. Two patients received a

second MTB recommendation (MTBR) based on a follow-up biopsy after progression of disease

occurred while being treated with molecularly guided therapy (pazopanib, CUP-42; cetuximab 

+ carboplatin + paclitaxel, CUP-70). In total, 58 MTBRs were issued. The first 56 MTBRs

contained 142 drug recommendations, which were grouped into eight different baskets

(tyrosine kinases, PI3K-AKT-mTOR, RAF-MEK-ERK, developmental pathways, DNA damage

response, cell cycle regulation, immune evasion and others) by the type of pathway a

recommended drug interacts with . Tyrosine kinases were the most common basket used for

recommendations (47/164, Fig. 4a and Supplementary Data 10). All drug recommendations

were sorted into groups by the NCT/DKTK evidence level they were based on as described by

Leichsenring and colleages  (Level 1A/B/C, 11/142, 8%; Level 2A/B/C, 89/142, 63%; Level 3,

31/142, 22%; Level 4: 11/142, 8%). 18 samples had a mutational burden of at least 100 non-silent

SNVs and coding indels, which was defined as hypermutation by the MTB and used as a

potential rationale for immune checkpoint inhibitor recommendations (immune evasion

basket).

Fig. 4: Recommended and applied therapies.

figure 4

Distribution of all therapy recommendations among 8 different baskets. Please note that most patients

received several recommendations. Distribution of a all therapy recommendations and b first 20

clinically applied therapy recommendations among eight baskets: Tyrosine Kinases, DNA Damage

Response, Immune Evasion, Cell Cycle, RAF-MEK-ERK, PI3K-AKT-mTOR, Developmental Pathways and

Other. Combination therapies were sorted into multiple baskets based on their mechanism of action.

Source data are provided as a Source Data file.

Full size image

Genomics-based systemic treatment
Twenty (20/56, 36%) patients were treated in accordance with MTBRs using 30 applied drugs or

drug combinations (Fig. 5 and Supplementary Data 11). Treatments were given off-label at the

discretion of the treating oncologist. Recommendations based on the immune evasion basket

were most likely to be applied (Fig. 4b). The distribution of NCT/DKTK evidence levels of the

first clinically applied recommendations showed a similar distribution as the one of all drug

recommendations (Level 1, 2/20, 10%; Level 2, 15/20, 75%; Level 3, 1/20, 5%; Level 4, 2/20, 10%). To

evaluate clinical benefit, we calculated the ratio (PFSr) of the progression-free survival time

associated with the first applied therapy recommended by MASTER (PFS2) and the progression-

free survival associated with the last prior systemic therapy (PFS1). Three (3/20, 15%) patients

did not progress during their last systemic therapy before they received a recommended

therapy. Therefore, neither PFS1 nor PFSr could be determined for them, but recommended

therapies translated into a PFS2 of 6.0, 10.0 and 11.1 months, respectively. Mean PFSr for the

other 17 patients was 3.6. Median PFSr was 2.3 with a range from 0.2 to 16.4. Median PFS1 was 2.9

months (n = 17) and median PFS2 was 7.8 months (n = 20, Supplementary Fig. 4). In one patient
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the PFS defining event was death, in the others it was progressive disease. To improve

concordance with physician-perceived clinical benefit, we calculated the modified PFS2/PFS1

ratio (mPFSr) as described by Mock, Heilig and colleagues , which resulted in a mean mPFSr of

5.0 (median mPFSr = 2.7; range 0.2 to 12.0; Table 2).

Fig. 5: Clinical course of 20 patients with molecularly guided therapy.

figure 5

a Each bar represents one patient in the study starting from date of diagnosis. PFS of the last systemic

therapy before molecular analysis (PFS1, green) and the first applied molecularly guided therapy (PFS2,

blue) are plotted inside those bars. Continued response at the end of the observation period is marked

with an arrow. The CUP-69 bar has been shortened by 60 months for visibility (true length 146 months).

For CUP-15, CUP-25 and CUP-70 neither PFSr nor mPFSr could be calculated. b Sankey plot depicting

best response associated with the last systemic therapy before genomic and transcriptomic analysis

(BR1, n = 20) in comparison with best response associated with the first applied molecularly guided

therapy (BR2, n = 20). Source data are provided as a Source Data file.

Full size image

Table 2 Clinical outcome.

Full size table

13/17 treated patients had a mean PFSr > 1.3, which was considered as clinical benefit since this

value has been frequently used as a measure for positive clinical outcome in precision oncology

trials . Four of them received treatment with immune checkpoint inhibitors, three with

ALK inhibitors, three with multikinase inhibitors, one with trastuzumab, one with vismodegib

and one with olaparib plus gemcitabine (Supplementary Data 12). Three patients had a PFS2 > 1

year, namely CUP-57 (26.5 months, trastuzumab), CUP-18 (23.3 months, nivolumab) and CUP-

08 (12.2 months, olaparib plus gemcitabine).

Observed responses were complete response (CR, 1/30, 3%), partial response (PR, 9/30, 30%),

stable disease (SD, 8/30, 27%), mixed response (MR, 3/30, 10%) and progressive disease (PD,

9/30, 30%). Of 20 patients who received the recommended targeted therapies, 12 (60%) had

stable disease ≥6 months or achieved objective remissions (PR/CR). PR was achieved with the

following treatments: crizotinib, CUP-02; olaparib + gemcitabine, CUP-08; pazopanib, CUP-15;

nivolumab, CUP-18/CUP-25/CUP-49; bicalutamide + leuprorelin + nab-paclitaxel, CUP-57;

trastuzumab, CUP-57; nintedanib + docetaxel, CUP-62.

Four patients were started on monotherapy or bridging therapies and switched to combination

therapy later on (CUP-21, CUP-39, CUP-51, and CUP-57; Supplementary Results). Notably, CUP-51

was started on nivolumab and showed MR so that the subsequent treatment was escalated to a

combination of nivolumab and ipilimumab, which led to CR with no reported progression until

the end of the observation period (PFS2 9.8 months).

Five patients who received an MTBR were treated with at least one subsequent treatment

afterwards, three of them received therapies based on two or more MTBRs, the other two (CUP-

38, CUP-70) received chemotherapies. CUP-69 had PD within three months after treatment

initiation with the first MTBR (olaparib, PFS2 3.6 months) and was subsequently treated with

chemotherapy again (FOLFOX, PFS3 2.9 months). After further progression, a second MTBR

was applied (cabozantinib, PFS4 9.4 months). CUP-20 received crizotinib (PFS2 5.9 months) and

after progression alectinib (PFS3 6.0 months). CUP-02 received treatment with the ALK

inhibitors crizotinib (PFS2 5.6 months), ceritinib (PFS3 10.2 months), alectinib (PFS4: 3.2

months) and brigatinib plus chemotherapy (PFS5 1.7 months) in accordance with the patients’

MTBR.

For patients that did not receive a recommended treatment, we calculated the ratio of the first

treatment applied after the MTB (PFSb; median = 3.8 months, n = 12) and the last prior systemic

treatment (PFSa; median = 4.8 months, n = 11), which resulted in a mean PFSr of 0.67 (median

PFSr = 0.71, range 0.1 to 1.0, n = 11; Supplementary Data 13). Median overall survival of the 36

patients without application of recommended treatments was significantly shorter than of the

20 patients that received a recommended therapy (18.3 months vs. 34.8 months, p = 0.022).

Same was true for median PFS2 and PFSb (7.8 months vs. 3.8 months, p < 0.0001). Two patients

with PFSb had stable disease ≥6 months or achieved objective remissions (PR/CR;

Supplementary Fig. 4). Since our study was not randomized, these results are not controlled for

possible confounding factors. Within MASTER, reasons for non-implementation of MTBRs

included lack of availability or reimbursement of recommended treatments, deterioration of a

patient’s general condition and death before treatment application . Further data are

provided in Supplementary Data 13 and 14.

The median number of prior systemic palliative therapies that patients with an applied MTBR

had received was three (range 1−7). Eleven had already been treated with targeted therapies

indicating that clinical benefit may be achieved even in heavily pretreated patients.

Discussion

In addition to known recurrent mutations in CUP, our comprehensive WGS/WES approach

detected a variety of rare genetic alterations, which were relevant for molecularly targeted

treatment decisions. This suggests that comprehensive molecular analysis is particularly well-

suited for this heterogeneous disease.

On the genomic level, we observed frequent mutations in well-known cancer-related genes such

as TP53, MUC16 and KRAS. The majority of these common alterations has previously been

described in studies using gene panel sequencing. When using a 50 gene panel, Löffler and

colleagues described TP53, KRAS, CDKN2A, and SMAD4 as the most frequently mutated genes

and CDKN2A as the most frequently deleted gene in CUP . Varghese and colleagues reported a

variety of targetable alterations in 45/150 CUP patients using MSK-IMPACT, a deep-coverage

hybridization capture-based assay encompassing 341 (later expanded to 410) cancer-associated

genes accompanied by WES in 13 cases . The most commonly mutated genes were TP53, KRAS,

CDKN2A, KEAP1, and SMARCA4 and 15/150 patients received targeted therapies . These

common mutations are involved in a variety of cell processes and do not offer a clear rationale

for targeted therapies available at the moment.

Furthermore, we and others report a substantial amount of pathogenic germline mutations

amongst CUP patients . These can have a direct impact on the patient and their

families. Therefore, germline testing should be considered, especially for young patients with

CUP or patients with previous malignancies.

On the transcriptomic level, we detected a variety of therapeutically relevant gene fusions. In

addition, we classified tumors based on transcriptomic and epigenetic information, which was

complemented by specific disease-defining alterations and by presence of certain dominant

mutational signatures. Nevertheless, only a third of the entity predictions based on methylome

and transcriptome did match, which may be explained by tumor cell content, RNA quality,

differences between TCGA and the MASTER cohort composition, as well as differences in the

methods used. The question whether site-specific therapies are beneficial for CUP patients is

still a matter of ongoing debate. Using a 92-gene RT-PCR cancer classification assay, Hainsworth

and colleagues reported that site-specific therapy leads to significantly improved survival when

clinically more responsive tumor types were predicted . In contrast, Hayashi and colleagues

reported that site-specific treatment based on microarray profiling did not result in a significant

improvement in 1-year survival compared with empirical paclitaxel and carboplatin, although

prediction of the original site seemed to be of prognostic value . Similarly, a meta-analysis by

Rassy et al. showed no significant survival benefit with site-specific in comparison to empiric

chemotherapy. At the same time the heterogeneity across the available data demonstrates that

further well-designed trials are needed  and that a reliable classification method for the

attribution of a CUP case to a specific tumor entity is still to be developed. Moran and

colleagues used microarray DNA methylation signatures (EPICUP) to predict a primary cancer

of origin in 188 (87%) of 216 CUP patients. In this study, patients with EPICUP diagnoses who

received a tumor type-specific therapy showed improved overall survival compared with that in

patients who received empiric therapy . Prospective validation of this epigenetic approach is

still missing.

In our study, we used epigenetic and transcriptomic analyses together with evaluation of

disease-specific mutations to identify the tissue of origin. On the one hand this increased the

total number of patients for whom an entity prediction was possible, on the other hand it led to

contradictory results in a majority of patients that had several layers of information available. In

these cases, it is not clear which data is to be trusted more. Probably, several factors contribute

to prediction errors by one or the other method: First, the composition of the MASTER CUP

cohort and the TCGA reference cohort differ in several aspects, including metastatic status and

represented entity subtypes. Second, differences in the sample preparation protocols between

MASTER and TCGA may introduce technical biases, confounding the algorithms of the

classifiers. And third, some entities are hard to distinguish using epigenetic/transcriptomic

information. For example, the classifiers frequently produced discrepant results concerning

hepatic metastases of pancreatic (PAAD) or cholangiocellular (CHOL) carcinoma, which were

classified inconsistently as one of PAAD, CHOL or LIHC (liver hepatocellular carcinoma). It is

unclear whether the missing success of prospective trials using site-specific treatment is due to

limited accuracy in identifying the tissue of origin or due to limited relevance of the site of

origin for clinical outcome in the majority of CUP patients. In our cohort, MTB

recommendations were not influenced by our methylome- and transcriptome-based entity

prediction since it was not available at the time of the MTB. Future trials might benefit from a

well-designed integrated classifier taking into account both methylation and transcriptomic

data. As previously shown in pancreatic cancer and other hard-to-treat entities, comprehensive

molecular profiling also offers the opportunity to detect rare or previously unknown

therapeutic targets . Therefore, in the light of continuously improving options regarding

molecular diagnostics and targeted therapies, genomics-based treatment might be the more

promising approach.

Our study had several potential limitations. First, our patient population was younger than one

would expect for a representative CUP cohort, which can at least be partially explained by the

NCT/DKTK MASTER inclusion criteria. Second, our cohort was treated with a wide range of

different therapies prior to molecular analysis. Third, our study was not a randomized clinical

trial but a prospective observational study. However, the mean PFS2/PFS1 ratio in our cohort

was 3.6. 13/17 treated patients (77%) for which a PFS ratio could be determined achieved a ratio

higher than 1.3, the originally proposed threshold for assessment of clinical benefit in previous

studies like MOSCATO 01 . The median overall survival in our cohort was significantly longer

when compared to published data, which may be partially attributed to the young patient age in

our cohort. Nevertheless, our results provide evidence that a considerable part of CUP patients

may benefit from comprehensive molecular analysis. Although there are case reports about

successful use of checkpoint inhibitors in CUP patients , immunotherapy in CUP has not been

clinically implemented yet, unless microsatellite instability or DNA mismatch repair (MMR)

deficiency have been detected. Our results underline that immunotherapeutic approaches can

be efficient in a much larger proportion of CUP patients. Furthermore, we observed a

meaningful proportion of CUP patients benefiting from molecularly stratified treatments. Two

prospective randomized phase II trials testing novel strategies versus empirical chemotherapy

are currently ongoing (CUPISCO, NCT03498521 and CheCUP, NCT04131621).

In conclusion, our findings indicate that comprehensive molecular analysis of CUP patients can

be highly beneficial even at late stages or following several rounds of prior treatment.

We provide valuable insight into the heterogenic genomic, transcriptomic and epigenetic

landscape of CUP and show potentially actionable alterations in a large proportion of patients.

Further prospective clinical studies to assess the impact of genomics-based personalized

cancer therapy are warranted.

Methods

Clinical and statistical analysis
The study included 70 patients who were enrolled in the National Center for Tumor Diseases

and German Cancer Consortium (NCT/DKTK) Molecularly Aided Stratification for Tumor

Eradication Research (MASTER) precision oncology program between May 2013 and July 2018

with follow-up until June 2019 . All 70 patients had a CUP diagnosis according to their

referring oncologists. Clinical data for cohort selection, description and analysis was obtained

from the National Center for Tumor Diseases (NCT) Heidelberg and Dresden, as well as from six

other comprehensive cancer centers (CCCs) of the German Cancer Consortium (DKTK). The

DKTK network includes ten CCCs at eight sites (Berlin, Dresden, Essen/Düsseldorf,

Frankfurt/Mainz, Freiburg, Heidelberg, Munich, Tübingen). Demographic data,

histopathological diagnosis, location of metastases at the time of enrollment, fulfillment of the

ESMO CUP diagnostic criteria, systemic therapies and staging information, genomic

information available at the time of the molecular tumor board (MTB), recommendations of the

MTB and application of recommended therapies were assessed and documented in a centrally

managed electronic data capture system (ONKOSTAR). MTB recommendations were based on

the information obtained from DNA and RNA sequencing. Therapeutic options steadily

improved over time. Every tumor board recommendation contains several drugs or drug

combinations with different priorities assigned. For our analysis, we included only the first

three priorities since there was no drug with a lower priority clinically applied. In some cases,

there were fewer than three drugs recommended. All drug recommendations were issued with

an NCT/DKTK evidence level reflecting the origin of the information that the respective

recommendation was based on . Overall survival (OS) was defined as the time from the date of

diagnosis to the date of death or last follow-up. Progression-free survival (PFS) was defined as

the time from the date of systemic therapy initiation to the date of death, progressive disease or

last follow-up. Median OS, PFS and follow-up time were estimated using the Kaplan–Meier

method, and a log-rank test was used to compare OS and PFS among patient subgroups. PFS of

the first applied treatment recommended by the MTB (PFS2) was compared to the PFS of the

last prior systemic treatment (PFS1) in each individual patient. If more than one recommended

therapy was applied, PFS3 and following were calculated. PFS defining events were progressive

disease or death, determined by a medical oncologist via review and assessment of the

corresponding medical documents. The progression-free survival time ratios (PFSr) between

PFS2 and PFS1 were calculated. Modified progression-free survival time ratios (mPFSr) were

calculated following the proposal of Mock and colleagues . For patients that did not receive a

recommended treatment, we calculated the ratio of the first treatment applied after the MTB

(PFSb) and the last prior systemic treatment (PFSa).

NCT/DKTK MASTER
NCT/DKTK MASTER is a prospective, continuously recruiting, multicenter observational study

that provides a standardized diagnostic workflow, which enables molecularly informed

decisions for further therapy. Treatment recommendations are made in cooperation with

treating oncologists following interdisciplinary discussion in a molecular tumor board.

MASTER includes adults with advanced cancer across all entities who are younger than 51 years

and patients with rare tumors, including rare subtypes of more common entities, regardless of

age. Patients must have exhausted curative treatment options and be in good general condition

(Eastern Cooperative Oncology Group performance status of 0 or 1) . Patients with cancers of

unknown primary were included regardless of age due to its rarity.

Patients provided written informed consent for banking of tumor and control tissue, molecular

analysis including germline analysis, and the collection of clinical data under a protocol (S-

206/2011) approved by the Ethics Committee of the Medical Faculty of Heidelberg University.

The study was conducted in accordance with the Declaration of Helsinki. Patients did not

receive participant compensation. Molecularly informed therapies were not part of MASTER

but given off-label at the discretion of and by the treating oncologist who obtained informed

consent for each therapy. German regulations for off-label treatment allow individual

treatment decisions after obtaining informed consent and no IRB approval is required. Costs

for off-label drugs can be reimbursed by German health insurances if the patient has a severe

disease, if there is no other treatment option available and if there is reasonable hope for

treatment success based on available scientific or clinical data.

Entity prediction validation cohort
We used 100 consecutive MASTER patients enrolled between 12/2020 and 06/2021

(Supplementary Data 5) consisting only of entities that are part of TCGA as a cohort to validate

all entity prediction methods and measured their accuracy before using them for CUP entity

predictions. Transcriptome data was available for 72 patients of the validation cohort

(Supplementary Data 6) methylome data for 77 (Supplementary Data 7).

Next-generation sequencing and bioinformatic processing

Sample preparation and sequencing

DNA from fresh frozen tumor tissue was isolated using the Allprep DNA/RNA/miRNA Universal

Kit (Qiagen) or QIAamp DNA mini (QIAGEN). DNA from formalin fixed paraffin embedded tissue

was isolated using the GeneRead DNA FFPE Kit (QIAGEN). DNA from peripheral blood was

isolated using QIAamp DNA Blood Mini (Qiagen) or QIASymphony DSP DNA Mini Kit (Qiagen).

The isolation process was followed by quality control and quantification using a Qubit 2.0

Fluorometer (Invitrogen) and a TapeStation 2200 system (Agilent). Libraries for whole-genome

sequencing were prepared with the Illumina TruSeq Nano (100 ng genomic DNA as input). Both

tumor and control (germline) samples were sequenced on 2 lanes Illumina HiSeq X Ten

(Supplementary Data 15). Libraries for whole-exome sequencing were prepared with the Agilent

SureSelect All Exon Kit v5 or v5 + UTRs (200 ng input). The libraries were sequenced on Illumina

HiSeq 2000, HiSeq 2500 or HiSeq 4000 (Supplementary Data 15). Samples were processed

centrally by the NCT Molecular Precision Oncology Program Sample Processing Laboratory

(SPL) and sequenced by the DKFZ Genomics and Proteomics Core Facility (GPCF). Further

information and exceptions are listed in Supplementary Data 8.

Nucleotide sequence alignment

DNA sequencing reads were mapped to the assembly comprising human genome (1000

Genomes Phase 2 of the Genome Reference Consortium; version hs37d5) and a genome of

Enterobacteria phage phiX174 using BWA mem (version 0.7.15) with -T0 parameter as the one

different from the default. BAM files were sorted with bamsort (biobambam package, version

0.0.148), and duplicates were marked with markdup (Sambamba package, version 0.6.5) .

Sequencing quality statistics are summarized in Supplementary Data 15.

Calling of single-nucleotide variants and small insertions and deletions

Somatic

Somatic SNVs were detected from matched tumor/normal sample pairs by an in-house analysis

pipeline based on SAMtools mpileup and bcftools and using heuristic filtering as previously

described . In short, initial SNV calls were detected in the tumor BAM by SAMtools

(version 0.1.19) mpileup, which considered only reads with minimum mapping quality of 30 (-q

30), and BCFtools, which reported all positions containing at least one high-quality non-

reference base (-vcgN -p 2.0). Afterwards these positions were checked in the control sample

using mpileup. SNVs were then annotated with ANNOVAR (version November 2014) using

GENCODE (release 19). Downstream filtering discarded variants with low support of the

alternative allele, occurring in tandem repeats and other read-attracting regions, having PCR

strand bias (WGS only), having sequencing strand bias, and having significant bias in the PV4

field of the mpileup output. SNVs with low confidence score were discarded. Somatic SNVs

annotated as missense, stopgain, stoploss, or splicing (two base pairs next to an exon

boundary) were defined as non-silent. Short indels were detected by Platypus (version 0.8.1) for

matched tumor/normal sample pairs . Only ones that had Platypus filter flag PASS or passed

custom filters allowing for low variant frequency were retained. Annotation of short indels was

done using ANNOVAR (version February 2016). The calls falling into a coding sequence or

splice-site were extracted.

Germline

Germline indels were called by Platypus. SNVs identified in the tumor sample were annotated as

germline if the control sample had at least 1/30 reads supporting the alternative allele. Germline

variants in 101 cancer predisposition genes (Supplementary Data 4) were further filtered for

rare variants and against frequent variants in an in-house database before assessment

according to AMP-ACMG guidelines. The p-value for age at onset comparison was generated

with a two-sided, equal variance t-test.

Tumor ploidy, purity and copy number profile determination

For samples sequenced with WGS, the absolute allele-specific copy numbers, tumor ploidy and

purity were estimated using ACEseq (version 5.0.1) .

For samples sequenced with WES, the absolute allele-specific copy numbers were estimated

using CNVkit (version 0.9.3) . Segments containing at least 20 heterozygous SNPs were further

processed to infer sample ploidy and tumor cell content (TCC) using a method adapted from

ACEseq. The algorithm tested each possible combination of TCC (range 0.15-1.0) and ploidy

(range 1.0–6.5) to find the local minima and thus optimal solution. If more than one solution

was possible, they were visually evaluated and ultimately one of them was chosen. Samples with

tumor cell content estimated to be 100% were considered unreliable (due to in fact low tumor

cell content) and thus discarded from the results (n = 19).

Microsatellite instability

Microsatellite instability was detected with MSIsensor (version 0.2) . The list of homopolymers

and microsatellites generated with the MSIsensor scan command from the 1000 genomes

reference comprises 33,386,244 loci. MSIsensor was run with a minimum required coverage of

15 reads for genomes and 30 for exomes in both tumor and control. A score > 3.5 implies

microsatellite instability.

RNA sequencing and gene fusion detection

If RNA quality was sufficient, either the Illumina TruSeq RNA (with 1000 ng total RNA) or the

Illumina TruSeq mRNA stranded protocol (with 500 ng total RNA) was used for library

preparation (TruSeq mRNA stranded since February 2016, Supplementary Data 15). Both are

Oligo-dT-based protocols and enrich for mRNA only. Three libraries were pooled and

sequenced on one lane HiSeq 4000 100 PE. The reads were aligned to the same reference

genome as DNA sequencing data with STAR 2.5.1b . The gene fusions were detected by Arriba

pipeline (version 0.8), the software is available on GitHub . Fusions were categorized into high,

medium or low level of confidence.

Mutational signatures

Mutational signatures were calculated using R/Bioconductor package YAPSA (version 1.13.3)

and COSMIC signatures (version 2) . All identified somatic SNVs were used for the analysis. Six

samples with less than 50 SNVs were excluded from the analysis. Mutational catalogs were

calculated separately for the whole-exome and the whole-genome sequencing data. The whole-

exome catalog was corrected additionally by factors specific for the target capture kits that

were used for the preparation of samples. Afterwards, mutational catalogs were normalized by

the average length of the coding sequence in Mb (2800 and 30 for WGS and WES, respectively)

and merged together for signature decomposition. Exposures were calculated per sample

using the set of 30 validated signatures (no artifact signatures) and absolute signature-specific

cutoffs with cost factor 6. Corresponding confidence intervals were calculated per sample. Only

if their lower bound was greater than 0, the signature was considered to be positively identified.

Methylation-based entity prediction

The Infinium MethylationEPIC BeadChip microarray (850 K) was used for 55 CUP samples and

77 samples of the validation cohort (Supplementary Data 7) to interrogate DNA methylation

patterns at genome-wide level. All samples were gathered within the NCT/DKTK MASTER

program and had a tumor cell content >30% of the NCT/DKTK MASTER cohort to interrogate

DNA methylation patterns at the genome-wide level. The library preparation, hybridization and

scanning of the array was performed at the German Cancer Research Center (DKFZ) Genomics

& Proteomics Core Facility. The raw data (idat files) were processed into beta values with the

minfi R package . Beta values range from 0 to 1 with 0 being a CpG unmethylated and 1 fully

methylated.

TCGA (The Cancer Genome Atlas) pan-cancer methylation was retrieved via the

curatedTCGAData package . The dataset (33 entities, 8024 samples) comprised both 450k and

27k methylation arrays. The intersection of these arrays comprised 25978 CpGs. For a more

meaningful entity prediction colorectal (COAD) and rectal (READ) adenocarcinomas were

binned together (COAD/READ).

The 5000 CpGs for the methylation-based entity predictions were derived after (i) removing

known SNPs as previously described , (ii) only considering overlapping CpGs between 850k,

450k and 27k arrays to ensure compatibility with all Illumina methylation arrays and (iii) lastly

calculating the top 5000 most variant CpGs across the pan-cancer dataset. The probe IDs are

listed in Supplementary Data 16.

Methylation-based entity prediction of 55 CUP samples and 77 samples of the validation cohort

was performed by correlating (Spearman correlation) the vector of 5000 CpGs with all samples

in the TCGA cohort. The entity of the sample with the highest correlation coefficient was

deemed to be the predicted entity.

Similarity in methylation profiles was visualized by tSNE plot with the Rtsne R package .

Missing data was imputed with the impute.knn function. The perplexity was set to 100.

Transcriptome-based entity prediction

In order to identify the tissue of origin of a CUP sample based on gene expression, we searched

for samples with a similar expression profile in two reference cohorts: the MASTER cohort

(comprising 1890 samples from 1814 patients, Supplementary Data 9) and the union of 33 TCGA

cohorts (TCGA cohorts with >50 samples were subsampled, yielding a total of 1809 samples).

For each reference cohort, we compared the expression profile of the CUP sample to all possible

pairwise combinations of reference samples. The reference samples were ranked by the number

of times they were more similar to the CUP sample than the other reference sample in a given

pair of reference samples. Similarity was measured as the fraction of genes that were

upregulated in both the CUP sample and one of the samples in a given pair of reference samples

(FPKM > 13), but downregulated in the other reference sample (FPKM < 3). The thresholds for

up- and downregulation were determined by means of 10-fold cross-validation on a subset of

the MASTER cohort. To mitigate the distortion of the CUP expression profile by contamination

from surrounding normal tissue in the bulk RNA-Seq data, we ignored genes found to be

upregulated in normal liver tissue (Supplementary Data 17) if the sample was obtained by liver

biopsy. The entity of the most similar reference sample was assumed to predict the entity of the

CUP sample. If the most similar reference sample was a CUP as well, the most similar non-CUP

sample was chosen for prediction instead. The method was validated on 72 patients from the

validation cohort (Supplementary Data 6).

Tumor mutational burden (mutations per megabase)

For each sample, the numbers of non-silent SNVs and coding indels in the exons of the tumor

were added and divided by the length of the coding sequence of the genome (in Mb). The

denominator depended on the technology, including different library preparation kits, used for

sequencing of a sample. For samples sequenced with WGS, the GENCODE Human v19 gene

annotation (GTF format) was taken, coding sequences were identified and merged, and the

total length was calculated. For samples sequenced with WES, however, the merged coding

sequences were additionally intersected with the coordinates of the corresponding target

capture (BED format). All sequence operations were done using bedtools v2.27.1 . Calculations

resulted in lengths: (i) 35.334619 Mb for WGS, (ii) 31.057260 Mb for WES with SureSelectXT

Human All Exon V5 including UTRs and (iii) 30.894643 Mb for WES with SureSelectXT Human

All Exon V5 excluding UTRs. Please note that the MTB used the sum of non-silent SNVs and

coding indels as measure for TMB.

Homologous recombination deficiency

Homologous recombination deficiency (HRD) was determined using three different methods.

The first one was being used for Molecular Tumor Board and could be applied to both whole-

exome and whole-genome sequencing data. This method was based solely on results from the

copy number analysis, and consisted of the estimation of two parameters: loss of

heterozygosity (LOH-HRD)  and large-scale state transitions (LST) . An unweighted sum of

those produced a score, which classified samples to high (>20), intermediate (11–20) or low

(≤10) level of impaired homologous recombination.

The other two methods which were used, HRDetect  and CHORD (version 2.0) , calculate a

method-specific probability score of HR deficiency and can be applied to whole-genome

sequencing data only. As inputs, they both used raw data comprising single-nucleotide

variants, small insertions and deletions, structural variants (detected with SOPHIA,

https://bitbucket.org/utoprak/sophia/src/master) and, only in case of HRDetect, copy number

variation. All 27 whole-genome sequencing samples with reliable copy number data were

therefore used in the analysis. Genes considered as HRD related in Fig. 1 are listed in

Supplementary Data 18.

Viral infections

We used three computational approaches to detect viral infections from next-generation

sequencing (NGS) data: a k-mer-based approach (Kraken2 version 2.1.2 ), an assembly-based

approach (P-DiP ), and an alignment-based approach where the sequencing reads were

aligned against concatenated assemblies of the human genome and all RefSeq viral genomes, in

accordance with Arriba’s workflow for the detection of viruses. Kraken2 was considered to make

a call if it detected at least one read per 40 million mapped reads as originating from a virus and

if at least 10% of the viral genome was covered with reads. For P-DiP, a cutoff of one virus-

originating read per million mapped reads was used. Moreover for the Arriba workflow, a

sample was considered to be associated with a virus when at least 5% and 100 bp (whichever was

bigger) of the viral genome was covered with reads. Supplementary Table 1 lists all viruses that

were reported by at least two methods. To detect viral integration sites, we used Arriba version

2.1.0 for RNA-Seq data and VIRUSBreakend version 2.12.0  for DNA-Seq data.

Additional data processing and analysis

The downstream analysis was performed in R (version 3.4.3) using Bioconductor repository and

such packages as tidyverse (version 1.2.1) , ComplexHeatmap (version 1.99.5)  and Biobase

(version 2.38.0) . If possible, the sample used for the first MTB was used for the general cohort

description, only for CUP-70 we analyzed the sample for the second MTB. PFS, PFSr, and mPFSr

were calculated using Microsoft Excel. Survival analysis using Kaplan–Meier estimator and log-

rank tests was performed using ggplot2 (version 3.3.3). p-values < 0.05 were considered

statistically significant.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary

linked to this article.
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Data availability

TCGA pan-cancer methylation was retrieved via the curatedTCGAData package . FPKM

expression values of the TCGA cohorts were obtained from the GDC data release v22.0.

Genome, transcriptome and methylation data generated in this study have been deposited in

the European Genome-phenome Archive under the accession number EGAS00001004786. The

data are available under controlled access due to the sensitive nature of genome sequencing

data, and access can be obtained by contacting the appropriate Data Access Committee listed

for each dataset in the study. Access will be granted to commercial and non-commercial parties

according to patient consent forms and data transfer agreements for as long as needed. We

have an institutional process in place to deal with requests for data transfer and aim for rapid

response time. GENCODE (release 19) was used for gene annotation and is publicly available.

The raw clinical data are protected and are not available due to data privacy laws. The processed

clinical data are available as Supplementary Data files. The remaining data are available within

the Article, Supplementary Information, Supplementary Data or Source Data file. Source data

are provided with this paper.

Code availability

Bioinformatics analyses were performed using above-mentioned open-source software with

parameters as described in each method section. The R script for transcriptome-based entity

prediction is available in Supplementary Software 1.
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